Eilatin Ru(II) Complexes Display Anti-HIV Activity and Enantiomeric Diversity in the Binding of RNA

Nathan W. Luedtke, Judy S. Hwang, Edith C. Glazer, Dalia Gut, Moshe Kol, and Yitzhak Tor

 Figure S.1: CD Spectra of Λ^- and Δ^- [Ru(bpy)$_2$eilatin]$^{2+}$.

2. Thermal Denaturation.

 Figure S.2: Denaturation profiles of calf thymus DNA.
Circular Dichroism

CD spectra were collected on an AVIV model 303A Circular Dichroism Spectrometer using a 1cm pathlength quartz cell containing 50 mM sodium phosphate pH 7.5. Spectra were collected with 16 µM of either (2) or (3) and these spectra were corrected by subtraction of a “buffer-only” spectrum. The raw data (ellipticity in mdeg) was converted into molar ellipticity ([È]) with the following formula:

\[[\Theta] = \frac{\Theta \text{ (mdeg)}}{(10 \times C \times l)} \]

Where C = concentration and l = path length in cm. The units for [È] are deg * cm² * decimole⁻¹

Figure S1: CD spectra of Λ−[Ru(bpy)₂eilatin]²⁺ (2) and Δ−[Ru(bpy)₂eilatin]²⁺ (3).
Thermal Denaturation

T_m experiments are conducted with a Varian Cary 1E UV-vis spectrophotometer equipped with a temperature control unit. In the same buffer as the displacement experiments (experimental section) 23 µM (base pairs) of Calf Thymus DNA is denatured at 0.5 °C/min and absorbance is monitored at 260 nm in either the presence or absence of 10 µM of either (2), (3), or (4). The temperature of melting is taken at the inflection point of the transition.

Figure S.2: Melting curves of calf thymus DNA alone (upper, left), 10 µM of (4) (upper right), 10 µM of (3) (lower, left), or 10 µM of (2) (lower, right).